Least Absolute Deviation Estimate for Functional Coefficient Partially Linear Regression Models

نویسندگان

  • Yanqin Feng
  • Guoxin Zuo
  • Li Liu
  • Artur Lemonte
چکیده

The functional coefficient partially linear regression model is a useful generalization of the nonparametric model, partial linear model, and varying coefficient model. In this paper, the local linear technique and the L1 method are employed to estimate all the functions in the functional coefficient partially linear regression model. The asymptotic properties of the proposed estimators are studied. Simulation studies are conducted to show the validity of the estimate procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection in Nonparametric and Semiparametric Regression Models

This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...

متن کامل

The Analysis of Bootstrap Method in Linear Regression Effect

This paper combines the least squaress estimate, least absolute deviation estimate, least median estimate with Bootstrap method. When the overall error distribution is unknown or it is not the normal distribution, we estimate the regression coefficient and confidence interval of coefficient, and through data simulation, obtain Bootstrap method, which can improve stability of regression coeffici...

متن کامل

Estimation and Testing for Partially Linear Single-index Models.

In partially linear single-index models, we obtain the semiparametrically efficient profile least-squares estimators of regression coefficients. We also employ the smoothly clipped absolute deviation penalty (SCAD) approach to simultaneously select variables and estimate regression coefficients. We show that the resulting SCAD estimators are consistent and possess the oracle property. Subsequen...

متن کامل

Weighted Least Absolute Deviation Lasso Estimator

The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of L1 regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviatio...

متن کامل

Local least absolute deviation estimation of spatially varying coefficient models: robust geographically weighted regression approaches

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014